COMPUTER SCIENCE MAJOR (B.S.)

https://ceps.unh.edu/computer-science/program/bs/computer-science

Description

Computer science focuses on problem solving with a particular emphasis on the design of computer-efficient solutions. Within a few years of obtaining a bachelor's degree alumni will have:

- Engaged in successful careers in diverse areas of software development and will be pursuing advanced education in computer science or related fields;
- Applied the full range of core computer science concepts and techniques to fill software development needs of an organization;
- Adapted to changing directions of computing technology and used state-of-the-art techniques to confront new problems effectively;
- Navigated the complex interconnections between software and the goals and constraints of the organization served;
- Participated responsibly in the pervasive and changing role of computing technology in global society as both software engineers and citizens:
- 6. Operated collaboratively in a team environment and assumed leadership roles.

The B.S. in computer science program is accredited by the Computing Accreditation Commission of ABET.

Requirements

Degree Requirements

Minimum Credit Requirement: 128 credits

Minimum Residency Requirement: 32 credits must be taken at UNH

Minimum GPA: 2.0 required for conferral*

Core Curriculum Required: Discovery & Writing Program Requirements

Foreign Language Requirement: No

All Major, Option and Elective Requirements as indicated. *Major GPA requirements as indicated.

Major Requirements

Computer science majors must maintain an overall grade-point average of 2.0 or better in all required computer science, mathematics, and computer engineering courses in order to graduate. If at the end of any semester, including the first, a student's cumulative grade-point average in these courses falls below 2.0, the student may not be allowed to continue as a CS major.

The following courses or their equivalents must be passed with a grade of C- or better in order to meet the CS major requirements: CS 415, CS 416, CS 420, CS 515, CS 520, and IT 403.

Students are expected to demonstrate consistent progress towards the satisfaction of the core degree requirements and are allowed two repeats

of the aforementioned courses before being dismissed from the program. This can be a single course repeated twice or two courses repeated once. Students may petition for reinstatement one-year after program dismissal.

If a student wishing to transfer into the computer science major has any coursework that is applicable to the major, the grades in those courses must satisfy the minimum grade requirements for the B.S. degree in computer science. The student must have an overall grade-point average of 2.0 or better in all courses taken at the university.

Computer science majors must complete the following coursework in computer science, mathematics, computer engineering, and science. (all courses are 4 credits unless indicated otherwise):

Code	Title	Credits
Computer Science Courses		
CS 400	Introduction to Computing	2
CS 415	Introduction to Computer Science I	4
or CS 410C	Introduction to Scientific Programming/C	
or CS 410P	Introduction to Scientific Programming/Python	
CS 416	Introduction to Computer Science II	4
CS 420	Foundations of Programming for Digital Systems	4
IT 403	Introduction to Internet Technologies	4
CS 501	Professional Ethics and Communication in Technology-related Fields	4
CS 515	Data Structures and Introduction to Algorithms	4
CS 518	Introduction to Software Engineering	4
CS 520	Computer Organization and System-Level Programming	4
CS 527	Fundamentals of Cybersecurity	4
CS 619	Introduction to Object-Oriented Design and Development	4
CS 620	Operating System Fundamentals	4
CS 659	Introduction to the Theory of Computation	4
CS 758	Algorithms	4
CS 761	Programming Language Concepts and Features	4
CS 791	Senior Project I	4
& CS 792	and Senior Project II	
or CS 799	Thesis	
Computer Science Electives	:	
Select one course from the f	following implementation electives:	4
CS 712	Compiler Design	
CS 720	Systems Programming	
CS 730	Introduction to Artificial Intelligence	
CS 735	Introduction to Parallel and Distributed Programming	
CS 752	Foundations of Neural Networks	
CS 753	Information Retrieval and Generation Systems	
CS 770	Computer Graphics	
CS 781	Data Science for Knowledge Graphs and Text	
Select three additional CS of	purses numbered 690-799	12
Professional Electives ¹		
Select one course from the f	following:	3-4
CS 700-level course		
IT 502	Intermediate Web Design	
IT 604	Server-side Web Development	
IT 605	Full-Stack Web Development	
IT 612	Scripting Languages	
IT 630	Data Science and Big Data Analytics	
IT 666	Cybersecurity Practices	
IT 705	Project Management for Information Technology	
MATH 525	Linearity I	
MATH 526	Linearity II	
MATH 527	Differential Equations with Linear Algebra	
MATH 528	Multidimensional Calculus	
MATH 545	Introduction to Linear Algebra	
MATH 645	Linear Algebra for Applications	
MATH 647	Complex Analysis for Applications	
MATH 736	Advanced Statistical Modeling	
MATH 737	Statistical Methods for Quality Improvement and Design	
MATH 739	Applied Regression Analysis	

Total Credits		129-130
Discovery requirements not	already covered by required courses ³	24
Other Courses		
One Discovery Physical Sci	ence (PS) with Discovery Lab	4
One Discovery Biological So	sience (BS) with Discovery Lab	4
Science courses ²		
or MATH 644	Statistics for Engineers and Scientists	
MATH 539	Introduction to Statistical Analysis	4
MATH 531	Mathematical Proof	4
MATH 426	Calculus II	4
MATH 425	Calculus I	4
Mathematics Courses		
GEN 711	Genomics and Bioinformatics	
GEN 604	Principles of Genetics	
ECE 700-level course		
ECE 649	Embedded Microcomputer Based Design	
ECE 562	Computer Organization	
MATH 788	Complex Analysis	
MATH 784	Topology	
MATH 783	Set Theory	
MATH 767	One-Dimensional Real Analysis	
MATH 761	Abstract Algebra	
MATH 760	Geometry	
MATH 756	Principles of Statistical Inference	
MATH 755	Probability with Applications	
MATH 753	Introduction to Numerical Methods I	
MATH 747	Introduction to Nonlinear Dynamics and Chaos	
MATH 745	Foundations of Applied Mathematics I	
MATH 743	Time Series Analysis	
MATH 741	Survival Analysis	
MATH 740	Design of Experiments I	

Professional electives must either be chosen from the list of approved courses or another non-introductory CEPS course with significant science and/or engineering focus approved on a per-course basis by the undergraduate studies committee.

³ One of these courses must be writing intensive.

Degree Plan

Sample Degree Plan

This sample degree plan serves as a general guide; students collaborate with their academic advisor to develop a personalized degree plan to meet their academic goals and program requirements.

First Year

Fall		Credits
CS 400	Introduction to Computing	2
CS 415	Introduction to Computer Science I	4
IT 403	Introduction to Internet Technologies	4
MATH 425	Calculus I	4
Discovery I		4
	Credits	18
Spring		
CS 416	Introduction to Computer Science II	4
CS 420	Foundations of Programming for Digital	4
	Systems	
MATH 426	Calculus II	4

ENGL 401	First-Year Writing	4
	Credits	16
Second Year		
Fall		
CS 515	Data Structures and Introduction to Algorithms	4
CS 518 or CS 527	Introduction to Software Engineering or Fundamentals of Cybersecurity	4
MATH 531 or MATH 539 or MATH 644	Mathematical Proof or Introduction to Statistical Analysis or Statistics for Engineers and Scientists	4
CS 501	Professional Ethics and Communication in Technology-related Fields (or Discovery II)	4
	Credits	16
Spring		
CS 520	Computer Organization and System-Level Programming	4
MATH 539	Introduction to Statistical Analysis	4
or MATH 644	or Statistics for Engineers and Scientists	
or MATH 531	or Mathematical Proof	
CS 527	Fundamentals of Cybersecurity	4
or CS 518	or Introduction to Software Engineering	4
Discovery II (or CS	•	4
, (1	Credits	16
Third Year		
Fall		
CS 619	Introduction to Object-Oriented Design and Development	4
CS 620	Operating System Fundamentals (or Professional Elective)	4
CS 659	Introduction to the Theory of Computation	4
Discovery III	, ,	4
	Credits	16
Spring		
CS 758 or CS 761	Algorithms or Programming Language Concepts	4
	and Features	
CS 700-level Elect		4
Professional Elect	tive (or CS 620)	4
Discovery IV		4
	Credits	16
Fourth Year		
Fall	Comica Decises I	0
CS 791 CS 761	Senior Project I	2
or CS 758	Programming Language Concepts and Features or Algorithms	4
CS 700-level Imple	ementation Elective (or 700-Level Elective II)	4
Discovery V		4
Discovery VI		4
	Credits	18
Spring		
CS 792	Senior Project II	2

Courses must carry the Discovery attributes of Biological Science or Physical Science and include Discovery lab (DLAB).

Total Credits	130
Credits	14
Discovery VII	4
CS 700-level Elective III	4
CS 700-level Elective II (or Implementation Elective)	

Discovery (7): Historical Perspectives, Humanities, Fine and Performing Arts, Social Science, World Cultures, Physical Science Discovery Lab, Biological Science Discovery Lab with ONE mandatory course with Writing Intensive (WI) attribute

Student Learning Outcomes

Program Learning Outcomes Graduates of the UNH BS CS program will have an ability to:

- Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- · Communicate effectively in a variety of professional contexts.
- Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
- Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
- Apply computer science theory and software development fundamentals to produce computing-based solutions.
- Learn independently about new technologies, and develop the skills needed to understand them.